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ABSTRACT
We discuss the construction of a photometric redshift catalogue of luminous red galaxies
(LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary
for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring pho-
tometric redshifts and their error distributions, and (iii) estimating the true redshift distribution.
We compare two photometric redshift algorithms for these data and find that they give compa-
rable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic
surveys, we find that the photometric redshift accuracy is σ ∼ 0.03 for redshifts less than 0.55
and worsens at higher redshift (∼ 0.06 for z < 0.7). These errors are caused by photometric
scatter, as well as systematic errors in the templates, filter curves and photometric zero-points.
We also parametrize the photometric redshift error distribution with a sum of Gaussians and
use this model to deconvolve the errors from the measured photometric redshift distribution to
estimate the true redshift distribution. We pay special attention to the stability of this deconvo-
lution, regularizing the method with a prior on the smoothness of the true redshift distribution.
The methods that we develop are applicable to general photometric redshift surveys.
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1 I N T RO D U C T I O N

Since their inception, photometric redshifts (Koo 1985; Connolly
et al. 1995; Gwyn & Hartwick 1996; Sawicki, Lin & Yee 1997;
Hogg et al. 1998; Benı́tez 2000; Bolzonella, Miralles & Pelló 2000;
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Csabai et al. 2000; Budavári et al. 2001; Collister & Lahav 2004)
have provided a possible solution to the major limitation of large
redshift surveys: i.e. that they are severely limited both in depth
and area by the throughput of spectrographs. Photometric redshift
algorithms essentially define a mapping from the observed photo-
metric properties of galaxies to their redshifts and other physical
properties such as luminosity and type. Given an accurate photo-
metric redshift algorithm, one can map the observable Universe in
three dimensions just by imaging in carefully chosen passbands.
The relative efficiency of imaging compared with spectroscopy al-
lows one to both go deeper and cover a larger area than is possible
with traditional redshift surveys. Such surveys would be invaluable
both for studies of large-scale structure, as well as understanding
the evolution of galaxies. In addition, imaging surveys with well
understood redshift distributions are essential for efforts to directly
map the matter distribution using weak lensing.

Defining a photometric redshift catalogue involves fulfilling two
requirements: one must photometrically specify a population of
galaxies for which reliable photometric redshifts can be obtained
and one must characterize the photometric redshift error distribu-
tion. Demonstrating this process is the purpose of this work, using
the five-colour imaging of the Sloan Digital Sky Survey (SDSS;
York et al. 2000) as an example.

Luminous red galaxies (LRGs) have long been recognized as a
promising population for the application of photometric redshifts
(Hamilton 1985; Gladders & Yee 2000; Eisenstein et al. 2001;
Willis, Hewett & Warren 2001). These galaxies have remarkably
uniform spectral energy distributions (SEDs; Schneider, Gunn &
Hoessel 1983; Eisenstein et al. 2003) that are characterized by a
strong break at 4000 Å caused by the accumulation of a number of
metal lines. The redshifting of this feature through different filters
gives these galaxies their characteristic red colours that are strongly
correlated with redshift. This makes it easy to select these galaxies
and to estimate photometric redshifts. In addition, these are among
the most luminous galaxies in the Universe and map large cosmo-
logical volumes. Furthermore, LRGs are strongly correlated with
clusters, making them an ideal tool for detecting and studying clus-
ters. All of the above make LRGs an astrophysically interesting
sample and an ideal candidate for a photometric redshift survey.

Measuring the photometric redshift error distribution requires a
calibration set of spectroscopic redshifts that span a similar colour
and magnitude range as the photometric catalogue. We use two
redshift catalogues to calibrate the luminous red galaxy (LRG) pho-
tometric redshifts, the SDSS Data Release (DR) 1 (Abazajian et al.
2003)1 LRG spectroscopic catalogue for redshifts <0.4 and the
SDSS–2dF LRG spectroscopic catalogue (Cannon et al. 2003) for
redshifts between 0.4 and 0.7. These catalogues have extremely good
coverage of the LRG colour and magnitude selection criteria by de-
sign; the selection criteria we use have been strongly influenced by
both these catalogues. In addition, we supplement the low-redshift
catalogue with the SDSS Main galaxy catalogue complete to an
r-band magnitude of 17.77.

A generic problem in interpreting analyses with photometric red-
shifts is estimating the conditional probability distribution, P(zspectro|
zphoto), as this allows us to connect the measurement (the photomet-
ric redshift) with the physical quantity (the actual redshift of the
galaxy). This ability to connect photometric redshifts with actual

1 We note that DR1 here only refers to the area coverage; the reduction
pipelines used are identical to those for DR2 and DR3. In particular, the
model magnitude bug in the DR1 reductions does not affect this paper.

redshifts is essential to theoretically interpret results derived from
photometric surveys and generically will be a significant source of
systematic error. The simplest way to measure P(zspectro|zphoto) is
to directly measure it from a calibration data set. Unfortunately,
P(zspectro|zphoto) depends on the underlying redshift distribution and
therefore, to obtain unbiased results, the calibration data and the
actual data must sample the same redshift distribution. This is quite
often not the case, because calibration data are drawn from het-
erogenous sources. We also note that simulations cannot solve this
problem, because the P(zspectro|zphoto) derived will depend on the sim-
ulated redshift distribution, which might differ significantly from the
true distribution.

The approach that we favour in this paper is to use the Bayes
theorem to relate P(zspectro| zphoto) to P(zphoto|zspectro), using the true
redshift distribution, dN/dz of the photometric sample. For sam-
ples selected only with an apparent magnitude cut, one can esti-
mate dN/dz directly from the galaxy luminosity function (for e.g.
Budavári et al. 2003). This approach is significantly harder for sam-
ples, like the ones considered in this paper, that involve multiple
magnitude and colour cuts, as it involves the joint luminosity–colour
distribution functions that are poorly understood.

We present an alternative method to estimate dN/dz in this paper,
that starts from the observation that the observed photometric red-
shift distribution is just the true redshift distribution convolved with
the photometric redshift errors. Phrased as such, estimating dN/dz
is simply the problem of deconvolving the redshift errors from the
measured redshift distribution. This problem, like all deconvolu-
tion problems, is ill-conditioned and must be regularized to obtain
a stable solution.

This paper is organized as follows. Section 2 describes the two
sources for our calibration data, the SDSS and SDSS–2dF sur-
veys, and presents our selection criteria for LRGs. In Section 3,
we describe two photometric redshift algorithms and calibrate them
against the catalogues from the previous section and measure the
photometric redshift error distribution. Section 4 discusses using
this error distribution to invert the observed photometric redshift
distribution to reconstruct the true redshift distribution, while Sec-
tion 5 summarizes our conclusions. Whenever necessary, we have
assumed a cosmology with �m = 0.3, �� = 0.7 and H 0 =
100 h km s−1 Mpc−1.

2 S E L E C T I N G R E D G A L A X I E S

We start by describing the data that form our calibration data set,
the spectroscopic (Main and Luminous Red Galaxy, LRG) survey of
the SDSS and the SDSS–2dF LRG survey; the reader is referred to
the appropriate technical documents (Eisenstein et al. 2001; Strauss
et al. 2002) for a more detailed description. We then present the
exact cuts used to construct our sample of LRGs. These are similar
in spirit to those in Eisenstein et al. (2001) although they differ in
detail.

Because the photometry for the two catalogues we use is from
the SDSS, we restrict our discussion in this paper to the SDSS
five-filter photometric system (Fukugita et al. 1996; Smith et al.
2002). The methods can be generalized to an arbitrary photometric
system. Except where explicitly specified, we will use SDSS model
magnitudes (Stoughton et al. 2002); for instance, g will refer to an
SDSS g-band model magnitude. SDSS Petrosian magnitudes will
be denoted by the subscript Petro, e.g. rPetro is the SDSS r-band
Petrosian magnitude.

Finally, a comment on the magnitude system used: it has be-
come traditional to use AB magnitudes (Oke & Gunn 1983) for
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estimating photometric redshifts. The SDSS magnitudes are close
to AB magnitudes, but differ at the millimagnitude level (Abazajian
et al. 2004). The final zero-point corrections for the SDSS have yet
to be determined; we use the best estimate of these offsets avail-
able at the time of writing. The offsets applied are �(u, g, r , i , z) =
(−0.042, 0.036, 0.015, 0.013, −0.002). We note that the photometric
redshifts are not very sensitive to the precise values of these offsets;
not including them changes the measured redshifts by �z ∼ 0.005,
completely subdominant to the photometric redshift errors.

2.1 The SDSS surveys

The SDSS is an ongoing survey to image approximately π sr of
the sky and follow up approximately one million of the detected ob-
jects spectroscopically. The imaging is carried out by drift-scanning
the sky (Gunn et al. 1998) in photometric conditions (Hogg et al.
2001), in five (ugriz) bands using a specially designed wide-field
camera. Using these imaging data as a source, objects targeted for
spectroscopy (Strauss et al. 2002; Blanton et al. 2003) are observed
with a 640-fibre spectrograph on the same telescope. All of these
data are processed by completely automated pipelines that detect
and measure photometric properties of objects, and astrometrically
calibrate the data (Pier et al. 2003; Lupton, in preparation). The
SDSS is close to completion and has had three major data releases
(Early Data Release, EDR, Stoughton et al. 2002; DR1, Abazajian
et al. 2003; DR2, Abazajian et al. 2004). This paper will limit itself
to DR1, with approximately 168 000 spectra.

The data used in this paper are from the Main (Strauss et al. 2002)
and LRG (Eisenstein et al. 2001) surveys. The Main galaxy sam-
ple is a magnitude limited survey targeting all galaxies with r Petro

< 17.77. The SDSS LRG sample targets a smaller set of galaxies
with r Petro <19.5; these galaxies are colour selected to have strong
4000-Å breaks allowing a spectroscopic determination of their red-
shifts even though they are ∼ 2 mag fainter than the Main galaxy
sample. The selection methodology of these galaxies forms the ba-
sis both of the SDSS–2dF survey, which we now discuss, and the
selection criteria we present in Section 2.3.

2.2 The SDSS–2dF survey

The second set of observations are the first data obtained as part of the
SDSS–2dF LRG survey. This redshift survey, started in early 2003,
exploits the marriage of two facilities: the wide-angle, multicolour,
imaging data of the SDSS and the 2dF spectrograph on the 4-m
Anglo-Australian Telescope (AAT; Lewis et al. 2002). The SDSS–
2dF LRG survey is being carried out in tandem with the SDSS–2dF
quasi-stellar object (QSO) survey to ensure optimal use of the 400
spectroscopic fibres available in the 2dF spectrograph.

The goal of the SDSS–2dF LRG survey is to replicate the selection
of SDSS LRGs but at a higher redshift, by going to fainter apparent
luminosities. In particular, we aim to closely match the space density,
luminosity range and colours of the lower-redshift SDSS LRGs,
thus allowing the study of the evolution of a single population of
massive galaxies over a large redshift range. To achieve this goal,
we use the same methodology as outlined in Eisenstein et al. (2001)
for selecting the low-redshift SDSS LRGs, but adapt the colour and
magnitude cuts to preferentially select LRGs in the redshift range
0.45 < z < 0.7. The SDSS–2dF LRG cuts we use are similar to those
of the Cut II SDSS LRG sample discussed in detail in Eisenstein
et al. (2001). However, because of the larger telescope (AAT) and the
longer integration times possible, we relax the r < 19.5 magnitude
limit of Cut II (which resulted in a severe redshift limit of z � 0.45

for the SDSS LRGs) to i � 20. As discussed in Eisenstein et al.
(2001), the selection of LRGs above z � 0.4 is actually easier than
selecting them at lower redshifts because the 4000-Å break moves
into the SDSS r band and, therefore, the SDSS r − i colour is an
effective estimate of the redshift, while the g − r colour is a proxy
for the rest-frame colour of the galaxy.

The details of the SDSS–2dF LRG selection criteria will be
presented elsewhere. However, as shown in Nichol (2003) and
Fig. 3, the SDSS–2dF selection criteria successfully reproduce
the luminosity range covered by the lower-redshift SDSS LRGs
(Eisenstein et al. 2001, both Cut I and Cut II,) over the expected
range of redshifts from 0.4 < z < 0.75. Note that the r − i colour
selection is very effective at isolating high-redshift galaxies, with
90 per cent of the galaxies having redshifts between 0.4 and 0.7, and
virtually none with redshifts <0.3. The SDSS–2dF LRG and QSO
surveys are underway with the goal of obtaining the final sample of
�10 000 LRGs and quasars. The data we use are all the data observed
through 2003 with reliable spectroscopic redshifts, a sample of
∼3000 galaxies.

2.3 Selection criteria

We now discuss the construction of a photometric sample of LRGs.
Although the selection criteria we present here (including the termi-
nology) are based on the spectroscopic selection used to construct
the two samples discussed above, we emphasize that these are not
the specific selection criteria for either sample, but rather are a syn-
thesis of different selection techniques. The goal of these selection
criteria is to photometrically select a uniform sample of LRGs over
the redshift range 0.2 < z < 0.7.

Fig. 1 shows a model spectrum of an early-type galaxy from the
stellar population synthesis models of Bruzual & Charlot (2003).
This particular spectrum is derived from a single burst of star for-
mation 11 Gyr ago (implying a redshift of formation, z form ∼ 2.6),
evolved to the present, and is typical of LRG spectra. In particu-
lar, the 4000-Å break is very prominent. In order to motivate our
selection criteria, we passively evolve this spectrum in redshift (in

Figure 1. A model spectrum of an early-type galaxy from (Bruzual &
Charlot 2003). The model was formed from a single burst of star formation
11 Gyr ago and assumes a solar metallicity. Note the prominent break in the
spectrum at 4000 Å. Also overplotted are the response functions (including
atmospheric absorption) for the Sloan Digital Sky Survey (SDSS) filters.
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Figure 2. The top panel shows simulated g − r and r − i colours of an early-
type galaxy as a function of redshift. The spectrum used to generate the track
is the same as in Fig. 1, but evolved in redshift. Also shown are the colour
cuts for Cut I (dashed, black) and Cut II galaxies (solid, blue in electronic
figure). The points show the stellar locus as determined by a sample of stars
with r-band magnitudes less than 19.5. The lower panel shows the colours c||
(diamonds, black) and d⊥ (triangles, red in electronic figure), as a function
of redshift. Also shown are fiducial redshift boundaries for Cut I (0.2–0.4)
and Cut II (0.4–0.6). Note that the range in g − r is identical to the range in
1 + z.

particular, taking the evolution of the strength of the 4000-Å break
into account) and project it through the SDSS filters; the result-
ing colour track in g–r–i space as a function of redshift is shown
in Fig. 2. The bend in the track around z ∼ 0.4, caused by the red-
shifting of the 4000-Å break from the g to r band, naturally suggests
two selection criteria: a low-redshift sample (Cut I), nominally from
z ∼ 0.2–0.4, and a high-redshift sample (Cut II), from z ∼ 0.4–0.6.
We define the two colours (Eisenstein et al. 2001; Eisenstein, private
communication)

c⊥ ≡ (r − i) − (g − r )/4 − 0.18, (1)

d⊥ ≡ (r − i) − (g − r )/8 ≈ r − i . (2)

We now make the following colour selections:

Cut I = | c⊥ |< 0.2; (3)

Cut II = d⊥ > 0.55, (4)

g − r > 1.4; (5)

as shown in Fig. 2. The final cut, g − r > 1.4, isolates our sample
from the stellar locus. In addition to these selection criteria, we elim-
inate all galaxies with g − r > 3 and r − i > 1.5; these constraints
eliminate no real galaxies, but are effective in removing stars with
unusual colours.

Unfortunately, as emphasized in Eisenstein et al. (2001), these
simple colour cuts are not sufficient to select LRGs as a result of an
accidental degeneracy in the SDSS filters that causes all galaxies,
irrespective of type, to lie very close to the low-redshift early-type
locus. We therefore follow the discussion there and impose a cut in
absolute magnitude. We implement this by defining a colour to use as
a proxy for redshift and then translating the absolute magnitude cut

into a colour–magnitude cut. We see from Fig. 2 that d⊥ correlates
strongly with redshift and is appropriate to use for Cut II. For Cut
I, we define

c|| = 0.7(g − r ) + 1.2(r − i − 0.18), (6)

which is approximately parallel to the low-redshift locus. Given
these, we further impose:

Cut I = rPetro < 13.6 + c||/0.3,

rPetro < 19.7; (7)

Cut II = i < 18.3 + 2d⊥,

i < 20. (8)

Note we use rPetro for consistency with the SDSS LRG target selec-
tion. We note that Cut I is identical (except in the numerical values
of the magnitude cuts in equation 7) to the SDSS LRG Cut I, while
the numerical values for Cut II were chosen to yield a population
consistent with Cut I (see below). This was intentionally done to
maximize the overlap between any sample selected using these cuts
and the SDSS LRG spectroscopic sample. The switch to the i band
for Cut II also requires some explanation. As is clear from Fig. 1, the
4000-Å break is moving through the r band throughout the fiducial
redshift range of Cut II. This implies that the K-corrections to the
r band are very sensitive to redshift; the i-band K-corrections are
much less sensitive to redshift allowing for a more robust selection.

The results of applying these cuts to the spectroscopic catalogues
are shown in Fig. 3. Because the SDSS spectroscopic catalogue is
at low redshift, we trim the catalogue using Cut I, while the higher-
redshift SDSS–2dF data are trimmed with Cut II. Our calibration
data set has 45 744 Cut I galaxies and 1474 Cut II galaxies. The large
number of low-redshift galaxies that pass Cut I indicate a failure of
our selection criteria at redshifts lower than z ∼ 0.15, as already
noted by Eisenstein et al. (2001). We however leave these galaxies

Figure 3. The top panel shows the spectroscopic redshift distribution,
dN/dz, of the Sloan Digital Sky Survey (SDSS; solid, black) and the SDSS–
2dF (dashed, red in electronic figure) samples trimmed using the selection
criteria of Section 2.3. Note that the SDSS sample is dominated by the low-
redshift main sample, accounting for the low normalization at high redshift.
The lower panel shows the i-band absolute magnitude distribution for the
two samples, demonstrating that our absolute magnitude cuts are selecting a
sample with Mi ∼ −22 as desired. Both dN/dz and dN/dM are normalized
so that they integrate to unity.
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in our analysis, because they will contaminate any photometrically
selected sample and it will be necessary to understand their photo-
metric redshift distributions. No such problem exists for the Cut II
galaxies, which have a negligible fraction of z < 0.4 galaxies. The
most significant contaminant for Cut II are M stars. The g − r > 1.4
cut removes most of these, although there is a small residual level
of contamination. Analyses using this or similar samples will have
to estimate the effect of this contamination on their results.

The lower panel of Fig. 3 shows the absolute magnitude distri-
bution of both Cut I and Cut II galaxies. As expected, the colour
magnitude cuts restrict the sample to bright galaxies; the median
i-band magnitude is Mi ∼ −22. Note that the Cut I and Cut II galax-
ies probe similar luminosities. The Cut I magnitude distribution
also has a tail extending to low luminosities; this is the failure of the
selection criteria at low redshift we encountered above.

3 P H OTO M E T R I C R E D S H I F T E S T I M AT I O N

Photometric redshift estimation techniques can be classified into two
groups, empirical and template-fitting methods. Empirical meth-
ods (Connolly et al. 1995; Wang, Bahcall & Turner 1998; Brunner,
Connolly & Szalay 1999) are based on the observational fact that
galaxies are restricted to a low dimensional surface in the space of
their colours and redshift. Using a training set of galaxies, these
methods attempt to parametrize this surface, either with low-order
polynomials, nearest-neighbour searches or neural networks. The
advantage of these methods is that they attempt to measure these
relationships directly from the data and so implicitly correct for
any calibration biases present. A publicly available example is the
Artificial Neural Network code (ANNZ; Firth, Lahav & Somerville
2003; Collister & Lahav 2004) that trains a neural network to learn
the relation between photometry and redshift from an appropriate
training set of observed galaxies whose redshifts are already known.
This code has a photometric redshift accuracy similar to the methods
described below(Collister & Lahav 2004).

The fact that these methods rely on training sets is their great-
est disadvantage. For these methods to work, the training set must
densely sample the entire redshift–colour space of interest, as it is
difficult to extrapolate outside the domain of the training set. Most
training sets, including the samples constructed above, violate the
above requirement and therefore are of limited utility. Template-
based methods do not suffer from these drawbacks and form the
basis for the two algorithms used in this paper, which we now
discuss.

3.1 Simple template fitting

Template-fitting methods start with a set of model spectra (the tem-
plates) of galaxies, either from spectrophotometrically calibrated
observations of galaxies (Coleman, Wu & Weedman 1980) or from
stellar synthesis models (Le Borgne & Rocca-Volmerange 2002;
Bruzual & Charlot 2003). These methods then attempt to recon-
struct the observed colours of galaxies by some (appropriately red-
shifted) linear combination of the templates, projected through the
appropriate filters. The best-fitted redshift is then an estimate of the
true redshift of the galaxy. Concretely, if we denote the templates
by � i(z), this algorithm can be cast as a minimization of

χ 2(ci , z) =
∑

α

{
fα − Rα

[∑
i ci�

i (z)
]

σα

}2

, (9)

where f α is the observed flux (with error σ α) of the galaxy in the
α filter and Rα(�) projects the spectrum � on to the α filter. For

definiteness, we work with the AB photometric system (Oke & Gunn
1983), where the apparent magnitude of a galaxy, mAB, is related
to its spectral energy distribution (SED), � (with units of W m−2

Hz−1), by

mAB = −2.5 log10

[∫
dν ν−1�(ν)Wα(ν)∫
dν ν−1g(ν)Wα(ν)

]
, (10)

where W α is the response of the α filter. The reference SED is given
by g(ν) = 3631 Jy (where 1 Jy = 10−26 W m−2 Hz−1).

One of the advantages of the LRGs is that their spectra are well
described by a single template (Eisenstein et al. 2003). We find that
the LRG colours are well described by a Bruzual & Charlot (2003)2

single instantaneous burst template at solar metallicity with the burst
occurring when the Universe was 2.5 Gyr old. The template evolves
with time, becoming redder and increasing the 4000-Å break, as
the more massive hot stars die. To incorporate this evolution, we
interpolate between models with bursts with ages of [11, 5, 2.5, 1.4,
0.9, 0.64, 0.1] Gyr to calculate the template as a function of redshift.
The photometric redshifts we derive are insensitive to the precise
time of the burst and, therefore, we do not attempt any optimization
of this parameter.

The implementation of this method we use is part of the IDL-
SPEC2D SDSS spectroscopic reduction pipeline (Burles & Schlegel,
in preparation) and can be downloaded through the World Wide
Web (WWW).3

3.2 Hybrid methods

Obviously, this simple template-fitting algorithm is effective only
when the templates accurately describe the photometric properties
of the galaxies for which one wants to estimate redshifts. This sug-
gests generalizing the template-fitting algorithm by incorporating
features of empirical methods (Budavári et al. 2000; Csabai et al.
2000; Budavári et al. 2001). The basic approach is to divide a train-
ing set into spectral classes corresponding to each of the templates.
Given these training sets for the individual templates, one can repair
the templates by adjusting them to better reproduce the measured
colours of the galaxies in the training set. By repeating this classifi-
cation and repair procedure, one can obtain an improved template set
that yields more reliable photometric redshifts (Csabai et al. 2003).
Moreover, this process of adjusting the templates to agree with ob-
servations makes hybrid methods potentially less sensitive to po-
tential systematic problems resulting from errors in the filter curves
or photometric zero-points. We refer the reader to the above papers
for details on the implementation of this algorithm. For the LRGs,
we start with an elliptical template from Coleman et al. (1980) and
apply the above algorithm to optimize it. This is done in an iterative
manner and converges after typically three iterations.

This single optimized template is used for an initial redshift es-
timate for all LRGs. The SDSS LRG sample is, however, selected
assuming a passively evolving elliptical template (Eisenstein et al.
2001). Therefore, we expect to gain in photometric redshift accuracy
if we allow the LRG spectral template to evolve with redshift. The
SDSS and SDSS–2dF redshift samples are subdivided into three
redshift intervals 0.00 < z < 0.35, 0.25 < z < 0.45 and 0.35 < z <

1.0, based on the photometric redshifts of the individual galaxies.
Within each interval, we optimize the spectral template as described

2 These template stellar population spectra are part of the GALAXEV package
available at http://www.cida.ve/∼bruzual/bc2003
3 http://spectro.princeton.edu
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Figure 4. Scatter plot showing the photometric redshift versus the spectro-
scopic redshift for a random 10 000 galaxies from our calibration sample.
The upper panel shows the results for the simple template-fitting code of
Section 3.1 and in the lower panel are the results for the hybrid code of Sec-
tion 3.2. The solid (red in electronic figure) line has slope 1, while the dashed
line marks the fiducial lower-redshift limit of any photometric luminous red
galaxy (LRG) sample. The difficulty of estimating redshifts at z ∼ 0.4 is
evident from the increased scatter.

above. The overlapping redshift intervals provide a smooth progres-
sion in spectral type from one redshift interval to the next, as well as
ensuring that the number and distribution of calibration redshifts is
sufficient to constrain the colours of galaxies across a broad spectral
range.

3.3 Results

We now apply the methods of the previous two sections to our cal-
ibration data set; the results are summarized in Fig. 4. Both are
essentially unbiased (|� zmean| < 0.01) at redshifts less that 0.5. At
higher redshifts, the photometric redshifts are systematically lower
than the spectroscopic redshifts by approximately 5 per cent. The
scatter in both methods is approximately σ ∼ 0.035, except at red-
shifts greater than 0.55, where the scatter grows to ∼0.06, caused
both by increased photometric scatter and increased uncertainties
in templates (caused by, for example, star formation or emission
lines).

There are two noticeable features in Fig. 4 that deserve comment.
The first is that the hybrid methods do significantly better than the
single-template fits at low redshifts (z < 0.15). This is a result of
the failure of the LRG selection criteria at low redshifts; a single
elliptical template no longer well describes this population. This
highlights an important advantage of the hybrid methods: they adjust
their templates to better describe the populations.

The second feature is the increased scatter around z ∼ 0.4,
caused by an accidental degeneracy as a result of the SDSS fil-
ters. Fig. 1 shows a gap between the g and r bands at approximately
5500 Å.4 As the 4000-Å break enters this gap at z ∼ 0.38, the lack of

4 This gap is partly intentional, avoiding the O I (5577 Å) night-sky emission
lines. However, the filters were intended to overlap more.

Figure 5. Simulations showing the effect of magnitude errors on the accu-
racy of the photometric redshifts. The upper left plot shows the reconstructed
photometric redshifts for a magnitude error, σ m = 0.03 in all five bands,
while the upper right panel has no S/N in the u and z bands and σ m = 0.03
in the remaining bands. The lower panel shows the redshift error induced by
magnitude errors; the solid line has constant error across the bands, while the
dashed line has constant error in g, r, i and zero S/N in u and z. Because the
magnitude errors are independant of redshift, the redshift errors are simply
computed over the entire redshift range.

coverage in either the g or r band causes a degeneracy between the
strength of the 4000-Å break and its location, increasing the redshift
errors.

It is useful to be able to separate the effects of template errors
from photometric errors in the redshift error budget. In order to do
this, we simulate galaxies by uniformly distributing them between
0 < z < 0.8 with synthetic colours given by the template used in the
method of Section 3.1. We then add errors to these synthetic fluxes,
focussing on two extreme cases: uniform errors across all five bands;
and zero signal-to-noise ratio (S/N) in the u and z band (i.e. infinite
magnitude errors corresponding to non-detection in the u and z band,
with uniform errors in the other bands). The latter case is motivated
by the fact that the SDSS camera is least sensitive in the u and z
bands, and because most LRGs are not detected in the u band. The
results of this exercise are shown in Fig. 5. The upper panels show
a realization with a (optimistic) magnitude error, σ m ∼ 0.03. For
comparison, the median S/N (∼1/σ m) for LRGs at z ∼ 0.3 is ∼(2,
30, 70, 80, 30) and ∼(0.5, 10, 25, 36, 15) at z ∼ 0.5. A prominent
feature is the degeneracy at z ∼ 0.4 discussed above, for the case
where the u and z bands have no signal. In this case, there is no
extra information that can be used to break the degeneracy between
the 4000-Å break strength and its location. Also, the scatter in the
photometric redshifts increases for redshifts greater than ∼0.35,
coinciding with the 4000 Å break moving into the r band and the
loss of redshift information from the g − r colour. The lower panel
shows how the redshift errors increase with increasing magnitude
errors, again for the cases of uniform S/N in all bands, and in g, r,
i with zero S/N in u and z. We also note that the redshift errors we
measure are consistent with being caused principally by photometric
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Figure 6. The double Gaussian fits to the error distribution as a function of spectroscopic redshift. The x-axis shows the redshift error, zspectro − zphoto, and
each panel is a redshift slice with the central redshift shown in the upper left. The histogram is the measured distribution, while the curves are the best-fitted
Gaussian (both individually and summed). The data here are Sloan Digital Sky Survey (SDSS) galaxies selected using Cut I. The photometric redshifts are
estimated using the method of Section 3.2.

scatter. However, the bias seen at high redshifts cannot be caused
by photometric errors and suggest either errors in the template, or
errors in the photometric zero-points or filter curves.

In order to parametrize the error distribution, we divide the cal-
ibration data into redshift slices of width 0.05 (except between z
= 0.6 and 0.7, which we combine because of the small number of
galaxies in that range). Within each of these ranges, we fit the error
distribution with a sum of Gaussians,

P(δz = zspectro − zphoto) = 1

N

N∑
i=1

bi exp

[−(δz − mi )2

2σ 2
i

]
, (11)

where N is the normalization given by

N =
N∑

i=1

√
2πbiσi . (12)

We find, as shown in Figs 6 and 7, that the error distribution is
well approximated by two Gaussians. The parameters of the fits for

both the simple template and hybrid methods are in Tables 1 and
2, respectively. We note that the cores of these error distributions
are significantly tighter than the errors mentioned above. However,
the error distributions typically have long wings that are responsible
for most of the measured rms errors. The discrepancies between the
SDSS and SDSS–2dF samples in the overlap region are the result
of a colour bias introduced by the sharp colour cuts, resulting in a
bias in the redshift estimation for Cut II galaxies between z = 0.35
and 0.45. We therefore recommend using the SDSS distributions to
z = 0.45 for samples constructed by combining Cut I and Cut II.

In addition to measuring the error distribution, it is useful to
measure the fraction of galaxies whose redshifts are catastrophically
wrong. We define a catastrophic failure as a photometric redshift that
differs from the spectroscopic redshift by more than �zc, where we
use �z c = 0.1 and 0.2. For �z c = 0.1, we have a catastrophic failure
rate of 3.5 per cent for the simple template-fitting algorithm and
1.5 per cent for the hybrid algorithm. However, a large fraction of
this is dominated by the underestimation of the photometric redshifts
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Figure 7. The same as Fig. 6 except for SDSS–2dF galaxies selected using Cut II and from redshifts 0.35 to 0.7.

at z > 0.5. If we increase �zc to 0.2, the failure rate drops to under
0.5 per cent.

4 E S T I M AT I N G dN/dz

In the previous section, we estimated the photometric redshift error
distributions as a function of the true redshift of the galaxy. With
this in hand, we turn to the problem of estimating the actual redshift
distribution, dN/dz of a sample of galaxies given the distribution of
their photometric redshifts, [dN/dz]p.

As discussed in the Section 1, the apparently trivial solution to
this problem is to measure the error distribution not as a function
of the true redshift, but as a function of photometric redshift. One
can then add these distributions, weighted by [dN/dz]p to estimate
the true redshift distribution. The problem with this approach is that
the photometric redshift error distributions measured as a function
of photometric redshift depend sensitively on the selection criteria
of the calibration sample. If these criteria do not match those of the
full sample (and in general, they will not), then dN/dz estimated
using the above technique will be biased.

In order to proceed, we observe that the photometric redshift
distribution is simply the convolution of the true redshift distribution
with redshift errors,[

dN

dz

]
p

∼
[

dN

dz

]
⊗ �z. (13)

If we define �(z −zp, z) as the probability that a galaxy at redshift
z is scattered to photometric redshift zp, then we can write out the
above more concretely:[

dN

dz

]
p

(zp) =
∫ ∞

0

dz′
[

dN

dz

]
(z′)�

(
z′ − zp, z′), (14)

where the left side has the known [dN/dz]p, while the right is the un-
known dN/dz. Equation (14) is a Fredholm equation of the first kind5

and is ubiquitous throughout astronomy (Craig & Brown 1986).
Unfortunately, such problems do not possess a unique solution and,
moreover, are ill-conditioned. Small perturbations in the data can

5 For a non-technical introduction, see Press et al. (1992), chapter 18.

C© 2005 RAS, MNRAS 359, 237–250



Photometric redshifts of luminous red galaxies 245

Table 1. Double Gaussian fits to the photometric redshift error, z − zp as a
function of z for the Sloan Digital Sky Survey (SDSS) and SDSS–2dF data.
(m1, σ 1) and (m2, σ 2) are the mean and standard deviation of the first and
second Gaussians respectively, while b is the ratio of the amplitude of the
second Gaussian to the first. The photometric redshifts were computed using
the method of Section 3.1. We recommend using the SDSS distributions to
z = 0.45 and SDSS–2dF for higher redshifts.

SDSS/SDSS–2dF photometric redshift errors
Single-template fitting
Double Gaussian fits

Catalogue zbin m1 σ 1 m2 σ 2 b

SDSS 0.05–0.10 0.031 0.045 −0.194 0.084 0.002
SDSS 0.10–0.15 0.008 0.019 0.029 0.060 0.119
SDSS 0.15–0.20 0.010 0.015 0.013 0.052 0.059
SDSS 0.20–0.25 0.008 0.036 0.011 0.013 1.000
SDSS 0.25–0.30 0.002 0.018 −0.026 0.070 0.058
SDSS 0.30–0.35 −0.002 0.019 −0.030 0.040 0.338
SDSS 0.35–0.40 −0.004 0.028 0.000 0.000 1.000
SDSS 0.40–0.45 0.007 0.028 −0.003 0.014 1.000
SDSS 0.45–0.50 0.015 0.023 0.001 0.011 1.000
SDSS–2dF 0.35–0.40 −0.064 0.026 −0.069 0.002 1.000
SDSS–2dF 0.40–0.45 −0.019 0.022 −0.330 0.000 0.000
SDSS–2dF 0.45–0.50 0.003 0.030 0.010 0.016 1.000
SDSS–2dF 0.50–0.55 0.018 0.035 −0.278 0.000 0.000
SDSS–2dF 0.55–0.60 0.023 0.049 0.066 0.113 0.021
SDSS–2dF 0.60–0.70 0.039 0.047 0.011 0.093 0.423

Table 2. The same as Table 1 except that the photometric redshifts were
computed using the methods of Section 3.2.

SDSS/SDSS–2dF photometric redshift errors
Hybrid method

Double Gaussian fits
Catalogue zbin m1 σ 1 m2 σ 2 b

SDSS 0.05–0.10 0.011 0.014 −0.005 0.036 0.491
SDSS 0.10–0.15 0.001 0.027 0.005 0.011 1.000
SDSS 0.15–0.20 0.005 0.022 0.007 0.009 1.000
SDSS 0.20–0.25 0.008 0.016 −0.040 0.060 0.025
SDSS 0.25–0.30 0.002 0.017 −0.028 0.063 0.050
SDSS 0.30–0.35 0.006 0.016 −0.029 0.041 0.136
SDSS 0.35–0.40 0.006 0.032 0.011 0.026 1.000
SDSS 0.40–0.45 0.014 0.027 0.004 0.012 1.000
SDSS 0.45–0.50 0.019 0.025 0.008 0.011 1.000
SDSS–2dF 0.35–0.40 −0.076 0.014 −0.058 0.012 1.000
SDSS–2dF 0.40–0.45 −0.017 0.026 −0.008 0.009 1.000
SDSS–2dF 0.45–0.50 0.007 0.021 0.037 0.098 0.006
SDSS–2dF 0.50–0.55 0.027 0.031 −0.003 0.011 0.792
SDSS–2dF 0.55–0.60 0.031 0.034 0.148 0.013 0.075
SDSS–2dF 0.60–0.70 0.052 0.043 0.053 0.227 0.020

produce solutions that are arbitrarily different. This is not surprising,
given that equation (14) describes a smoothing operator that gener-
ically loses information, implying that the solution will in general
require incorporating some prior knowledge about dN/dz.

4.1 Discretization and the classical solution

We begin by approximating [dN/dz]p as a step-wise constant func-
tion measured in n bins, [zi

p, zi+1
p ) with i = 0, . . . n − 1, and dN/dz

in m bins, [zj, zj+1) where j = 0, . . . , m − 1. Substituting into

equation (14), we obtain[
dN

dz

]
p,i

= Ai j

[
dN

dz

]
j

, (15)

where we assume the Einstein summation convention. The response
matrix Aij is given by

Ai j = 1

zi+1
p − zi

p

∫ zi+1
p

zi
p

dz′
p

∫ z j+1

z j

dz′�(z′ − z′
p, z′). (16)

For the specific case where � can be described by a sum of N Gaus-
sians (equation 11), one can perform one of the integrals explicitly
to obtain

Ai j = 1

zi+1
p − zi

p

∫ zi+1
p

zi
p

dz′
p

√
π

2

N∑
k=1

bkσk

× [
f (z̄k, z j+1, σk, z′

p) − f (z̄k, z j , σk, z′
p)
]
, (17)

where we define

f (z̄, z j , σ, z) = erf

( |z j − z̄ − z|√
2σ

)
sgn

(
z j − z̄ − z√

2σ

)
, (18)

where sgn is the sign operator and erf is the error function. Note
that discretizing the problem has recast an integral equation (equa-
tion 14) into a matrix problem (equation 15), albeit with a non-square
matrix. We can obtain a solution to this problem by singular value
decomposition (SVD; Press et al. 1992). We denote this the classi-
cal solution because we do not explicitly use any prior information
about dN/dz.

In order to understand the behaviour of the classical solution, we
test it on simulations of the photometric redshift distribution. We
start by distributing galaxies randomly in redshift between z = 0
and z = 1 according to

dN

dz
= z2

1 + exp (20z − 14)
. (19)

This distribution initially grows as z2, and is exponentially cut off
at z ∼ 0.6 and approximates a volume limited distribution with a
magnitude limit at high redshifts. Random redshift errors, using the
model of Table 1, are added to obtain photometric redshifts, zp. For
redshifts greater than 0.7, the errors are sampled from a Gaussian
whose mean and width are obtained by linearly extrapolating the
errors from Table 1. Finally, we restrict to galaxies with zp ∈ [0.1,
0.7]. An example of the true and photometric redshift distributions
is shown in Fig. 8.

The photometric redshift distribution is then discretized into n
bins, [dN/dz]p,i. We present results for n = 10 (�z = 0.06) and
n = 15 (�z = 0.04). The estimated dN/dz is likewise parametrized
as a piecewise constant function from z = 0 to 1 with a step width of
�z = 0.05. Using these parametrizations, we construct the response
matrixAij (equation 16) and solve for dN/dz using equation (15). For
the parameters considered here (and indeed, for generic choices),
this is an underdetermined linear system. We solve it using SVD
and back-substitution (Press et al. 1992), setting singular values
< 10−5 to zero. Fig. 8 shows the estimated dN/dz averaged over
50 simulations and compares it to the true redshift distribution.

The first observation is that the classical solution reconstructs the
redshift distribution accurately for certain choices of discretizations
and, in particular, for discretizations of the photometric distributions
with step sizes approximately the width of the photometric redshift
errors. The largest errors are for z � 0.9 that result from the fact
that dN/dz is almost completely unconstrained at these redshifts by
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Figure 8. Results of simulations of the classical solution of the redshift in-
version problem. The solid (black) histogram is the true redshift distribution,
while the broken (red in electronic figure) histogram shows the photometric
redshift distribution. The connected boxes (green in electronic figure) and
stars (blue in electronic figure) show the reconstructed redshift distributions
for different discretizations (10 and 15 bins, respectively) of the photo-
metric redshift distributions. In both cases, the reconstructed distribution is
parametrized by 20 step functions.

[dN/dz]p as only 6 per cent of objects at these redshifts scatter to
z � 0.7.

We also observe that as we increase the resolution of [dN/dz]p,
the reconstruction goes unstable, ringing at the edges of the photo-
metric redshift catalogue. Note that the reconstructions in Fig. 8 are
averages and the instabilities in a single reconstruction are signifi-
cantly larger.

This behaviour has a simple, intuitive explanation. The effect of
photometric redshift errors is to smooth away the high-frequency
[(redshift error)−1] components in dN/dz. However, [dN/dz]p has
high frequencies as a result of noise in the data and these induce
large oscillations in the reconstruction. To be more quantitative, we
start with a simplified model of the photometric errors,

�(z − zp, z) ∝ exp

[−(z − zp)2

2σ 2

]
. (20)

A component of dN/dz with frequency k will be attenuated by a
factor of∫

dz exp

[−(z − zp)2

2σ 2

]
eikz ∝ exp

(
−k2σ 2

2

)
. (21)

However, [dN/dz]p has a Poisson noise component that tends
to a constant at high frequencies. Therefore, the inversion ex-
cites high-frequency modes in the reconstruction with amplitude
∝ exp(k2σ 2/2). Equation (21) also implies that this becomes signif-
icant for modes with k > 1/σ , agreeing with our intuitive picture.

The effect of the discretization step size on the the stability of
the classical solution is now clear: discretization cuts off frequen-
cies higher than ∼1/δz where δz is the step size, filtering out the
problematic modes. This also suggests that the ideal discretizations
have δz ∼ σ , as demonstrated in our simulations.

4.2 Regularization

We would like to modify the classical solution so that it becomes
less sensitive to the inversion instability discussed in the previous
section. In order to do so, it is useful to rephrase the classical solution
as a minimization problem.6 If we define the energy functional,

E0 =
Ai j

[
dN

dz

]
j

−
[

dN

dz

]
p,i


2

, (22)

then the classical solution is the value of dN/dz that minimizes E0.
Given this description, it is trivial to include a penalty function that
imposes smoothness on the reconstructed function,

E = E0 + λP, (23)

where P is the penalty function and λ adjusts the relative weight of P
in the minimization of E.7 There are number of possible choices for
the P that would impose smoothness; we use the forward difference
operator,

P =
m−1∑
j=0

([
dN

dz

]
j+1

−
[

dN

dz

]
j

)2

. (24)

There remains the problem of choosing an appropriate value for λ.
Unfortunately, there is no a general method for choosing an optimal
value. The best that we can do is to define a general merit function
that objectively selects an appropriate range for λ. Based on the
discussion in Craig & Brown (1986), we use

�2 = 1

n

n−1∑
i=0

[(
Ai j

[
dN

dz

]
av, j

−
[

dN

dz

]
p,i

)]2

+ 1

m

m−1∑
j=0

〈([
dN

dz

]
j

−
[

dN

dz

]
av, j

)2〉
, (25)

where the average reconstruction [dN/dz]av,j is estimated either
from simulations or bootstrap resampling. The first term is a mea-
sure of how well the reconstructed dN/dz reproduces the observed
[dN/dz]p; this term is minimized8 as λ → 0 and increases with
increasing λ. The second term, the error in the reconstruction, mea-
sures its stability to the presence of noise in the data. As λ → ∞, the
penalty function dominates the minimization and the reconstruction
is the most stable. As λ decreases, the reconstruction is more sensi-
tive to noise in the data, increasing this term. Choosing a value of λ

near9 the minimum of �2 picks a compromise between an accurate
and stable reconstruction.

In order to test this method, we return to the simulations of the
previous section. Because the regularization removes the sensitivity
to the discretization of the photometric distribution, we discretize
[dN/dz]p into 50 bins of thickness �z = 0.012. The estimated
redshift distribution is parametrized by 40 step functions of width
�z = 0.025. Given these parameters, we must estimate the appropri-
ate value of λ. To do this, we run 50 simulations for a given value of

6 For an alternative approach to solving this problem, see Lucy (1974).
7 This approach appears in the literature as the method of regularization,
the Phillips–Twomey method, the constrained linear inversion method and
Tikhonov–Miller regularization (Press et al. 1992).
8 Assuming the generic case of an underdetermined system, m � n.
9 We are being intentionally vague here; the precise minimum may not be
the optimal choice. However, the value of �2 provides a measure of the error
that one is making as we move from the minimum.
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Figure 9. The value of �2 as a function of λ for the simulations discussed
in the text. λ has been rescaled such that λ = 1 corresponds to equal weight
being given to E0 and P in equation (23). The dotted and dashed lines
show the error and stability components of equation (25), respectively. As
expected, the error term increases with increasing λ, while the stability term
decreases with increasing λ. The minimum of �2 occurs near λ = 0.5.

λ to evaluate �2 and repeat this for a grid of values of λ. The results
are shown in Fig. 9. We note that �2 has a well-defined minimum,
with the error and stability terms demonstrating the λ dependence
that we anticipated. Note that the error term does not go to zero as
λ → 0, but appears to asymptote to a non-zero constant. This is
readily understood in terms of the discussion in the previous sec-
tion: the measured [dN/dz]p has a high-frequency noise component
that cannot be reproduced by the convolution of dN/dz with the
redshift errors. It is this noise component that is responsible for the
non-zero value of the error term in �2 as λ → 0.

The upper panel of Fig. 10 shows the average of 50 reconstruc-
tions of dN/dz for values of λ near the minimum of �2. We observe
that for all the values of λ considered in the figure, the reconstruc-
tions closely match the input redshift distribution for all redshifts
<0.7. As before, the largest discrepancies are at high redshift be-
cause of the lack of constraint as a result of the upper photometric
redshift limit of 0.7. It is also instructive to consider extreme val-
ues of λ; these are shown in the lower panel of Fig. 10. For small
values of λ, the reconstructions are extremely noisy, while for large
values of λ, the penalty function dominates the reconstruction. Note
that the forward difference operator (equation 24) represents a con-
stant prior, which is what we see the reconstructions approaching
as λ → ∞.

We make one cautionary observation. Based on Fig. 10, one might
conclude that the best strategy for choosing λ is to preferentially
choose a smaller value than that suggested by the minimum of �2.
We however discourage this because, as indicated in Fig. 9, such
reconstructions are very noisy. This lack of stability would result in
small errors in the redshift error distribution being amplified in the
reconstructions.

How many galaxies are required for the inversion? The simula-
tions discussed above used 100 000 galaxies, similar to the expected
number of photometric LRGs over the same area of sky. We have
however tested the inversion on as few as 1000 galaxies and found
that, for appropriate regularizations, the algorithm reconstructs the
input redshift distribution. However, for small samples, the Poisson

Figure 10. Regularized estimates of dN/dz for different values of the reg-
ularization parameter, λ. In both panels, the black histogram shows the true
redshift distribution. The upper panel shows the reconstructions for values
of λ about the minimum of �2; the stars (red in electronic figure), dia-
monds (green in electronic figure) and crosses (blue in electronic figure)
correspond to λ = 0.1, 0.5 and 1.0, respectively. The lower panel shows the
reconstructions for extreme values of λ, the crosses (red in electronic figure)
and diamonds (green in electronic figure) correspond to λ = 10−10 and 1000,
respectively. The values of λ have been rescaled as in Fig. 9.

noise in the input photometric redshift distribution can be signif-
icant, resulting in a noisier reconstruction (for the same redshift
resolution). This may be improved by smoothing the resulting re-
construction or, equivalently, reconstructing the redshift distribution
on a coarser redshift grid.

There is an important generalization of this method that should
be mentioned. We introduced the concept of regularization and the
penalty function to cure an instability in the deconvolution as we
attempted a finer resolution of the redshift distribution. Phrased dif-
ferently, the deconvolution became unstable when the input had low
S/N and the prior (in the form of the penalty function) compensated
for this loss of information. In the cases considered in this paper, we
have used a relatively weak prior; however, if one has reliable prior
information (for example, the rough shape of the redshift distribu-
tion), one can easily include that information. A strong prior will
allow one to obtain a solution even in the low S/N regime. We do
however remind the overzealous reader that the usual caveat about
strong priors does apply in this case; the method cannot recognize
an incorrect prior and will get the wrong answer if such a prior is
heavily weighted.

4.3 Application to SDSS data

Before applying this algorithm to a photometric sample, we test it
against the Cut I calibration data set described in Section 2.3. The
results are shown in Fig. 11. The reconstructed redshift distribution
correctly captures all the broad features of the true redshift distribu-
tion, including correcting for the bias at z ∼ 0.1 and sharpening the
dip at z ∼ 0.25. Fig. 11 also highlights the inability of this method
to reconstruct sharp features because these are disfavoured by the
smoothness prior we impose; the inversion works best for broad fea-
tures. It is worth emphasizing that most sharp features (including the
feature at z ∼ 0.075) are spurious (e.g. binning artefacts). However,
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Figure 11. Regularized estimate (solid, black) of dN/dz for the Cut I cal-
ibration data (histogram). The input photometric redshift distribution is the
dashed (red in electronic figure) line. dN/dz is normalized to integrate to
unity.

if a sharp feature is physically expected in the distribution, the prior
must be adjusted to allow for this.

We conclude this discussion by applying the above algorithm to
the SDSS photometric data. A detailed discussion of the construc-
tion and properties of the SDSS photometric LRG sample will be
presented elsewhere; briefly, the sample is constructed by applying
the photometric selection criteria (Cut I and Cut II, see Section 2.3)
to objects classified as galaxies by the photometric pipeline. We
then estimate a photometric redshift for each of the selected objects
using the simple template-fitting code of Section 3.1; however, the
results are insensitive to the choice of algorithm. The photometric
redshift distribution is shown in Fig. 12.

Figure 12. Regularized estimate (solid, red in electronic figure) of dN/dz
for the luminous red galaxy (LRG) sample culled from the Sloan Digital Sky
Survey (SDSS) photometric data, compared with the photometric redshift
distribution (histogram, black). The redshift distribution is for galaxies with
0.2 < zphoto < 0.6, indicated by the vertical dashed lines. As before, dN/dz
is normalized to integrate to unity.

One feature of this distribution that deserves some explanation
is the bump in the number of galaxies at z ∼ 0.7. This is incon-
sistent with being the same population of LRGs selected with an
apparent magnitude cut. It is unlikely that these are a different pop-
ulation at z ∼ 0.7, as they would have to be a significantly brighter
population than the LRGs, which only appeared at high redshifts.
A more likely explanation is that these are faint galaxies at lower
redshifts scattered to high redshifts by photometric errors. This is
more likely, in light of the fact that these galaxies have i ∼ 20, g −
r ∼ 2 and r − i ∼ 1, giving them r ∼ 21 and g ∼ 23. This is at the
very edge (or beyond) the photometric completeness of SDSS and
the measurements will have significant photometric errors (∼ tenths
of a magnitude). Given such photometric errors, it is likely for the
more numerous low-redshift galaxies to be scattered into the LRG
colour space. Furthermore, the spectral templates that we use are
not well constrained by observations for redshifts >0.7. To avoid
the complications of correcting for such contamination, we restrict
our catalogue to zphoto < 0.6. Similarly, as discussed earlier, the pho-
tometric selection breaks down at low redshifts and so we impose a
lower-redshift cut-off of zphoto > 0.2. Note that this lower-redshift
cut is imposed only to select a uniform sample; the inversion must
be (and is) performed at all redshifts. However, the small photo-
metric redshift error at these redshifts minimizes the contamination
from these galaxies, effectively truncating the inverted distribution
at z ∼ 0.2.

We can now apply the inversion algorithm to estimate the true
redshift distribution, using the error distributions measured in Sec-
tion 3.3. The merit function, equation (25), is computed by bootstrap
resampling the actual catalogue; the measured �2 has a form sim-
ilar to Fig. 9. Using the value of the regularization parameter, λ,
obtained from �2, we show the estimated redshift distribution for
galaxies with 0.2 < zphoto < 0.6 in Fig. 12. The underestimation of
the photometric redshifts at high redshifts is immediately apparent
from the comparison of the two distributions. The bumps from z =
0.3 to 0.4 are a residual artefact of the inversion. These vanish for
higher values of λ and become stronger for lower regularizations,
but are more unstable. The value of λ used is a balance between this
stability and accuracy, as intended.

5 D I S C U S S I O N

As we discussed in the Section 1, constructing a photometric redshift
catalogue involves three steps: photometrically selecting a sample
for which accurate photometric redshifts can be obtained; measuring
the photometric redshift error distribution for the resulting sample;
and estimating the true redshift distribution. This paper describes
all stages of this process.

(i) We describe the selection of a sample of LRGs using the SDSS
photometric sample. These galaxies are typically old elliptical sys-
tems with strong 4000-Å breaks in their continua. The shifting of
this feature through the SDSS filters makes accurate photometric
redshifts possible.

(ii) We measure the error distribution of this sample by comparing
photometric and spectroscopic redshifts for a calibration subsample
of galaxies culled from the SDSS and SDSS–2dF spectroscopic
catalogues. The scatter in the redshifts is approximately σ ∼ 0.03 at
redshifts less than 0.55, and increases at higher redshifts as a result
of increased photometric errors and uncertainties in the templates.

(iii) The accuracy of the photometric redshifts is similar for the
two algorithms we consider: a simple template fit and a hybrid
algorithm that adjusts the template to better fit the observed colour
distribution.
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We have specifically used the SDSS photometric sample throughout
this paper, both as an example and for its intrinsic interest. How-
ever, we emphasize that the entire process that we describe can be
reconstructed for any multicolour imaging survey with appropriate
filters.

Using such a photometric redshift sample requires knowing the
conditional probability that a galaxy with a photometric redshift,
zphoto, has a true redshift, zspectro. Given the redshift error distribu-
tion, this conditional probability can be readily estimated using the
Bayes theorem if the true underlying redshift distribution is known.
Using the fact that the photometric redshift distribution is the true
redshift distribution convolved with redshift errors, we presented a
method to deconvolve the errors to estimate the redshift distribu-
tion. This method is ill-conditioned and, therefore, we use a prior
on the smoothness of the redshift distribution to regularize the de-
convolution. We have calibrated the relative weight of this prior by
measuring the accuracy and stability of the recovered redshift distri-
butions, and we proposed a general merit function that objectively
determines this weight.

We conclude with a few comments about this algorithm.

(i) The particulars of the sample selection are encoded into the
photometric error distribution. The method is therefore completely
general, and applicable to any combination of colour selections and
photometric redshift cuts.

(ii) The accuracy of the recovered redshift distribution is deter-
mined by the accuracy of the input error distributions. Therefore, it
is essential that the calibration data used to measure the error dis-
tribution correspond as closely as possible to the actual data, both
in photometric depth and accuracy. One can attempt to extrapolate
these distributions to fainter magnitudes or measure them from sim-
ulations, but with the caveat that the actual distributions may be very
different from these and that the reconstruction could potentially be
sensitive to these errors. We emphasize that this limitation is not
unique to this method, but affects all analyses that use photometric
redshifts.

(iii) The deconvolution algorithm is formally applicable to arbi-
trary error distributions. However, for complex error distributions
(e.g. multiply peaked distributions), multiple solutions may exist
and there is no guarantee that the method will converge to the cor-
rect solution. This problem is avoided here by the use of photometric
pre-selection; in general, it could also be prevented by the use of pri-
ors in the photometric redshift estimation. We strongly recommend
using one of these methods to break photometric redshift degenera-
cies.

(iv) An advantage to this method is that the calibration data need
not sample the redshift range of interest in the same manner as the
photometric data. It suffices that it samples the entire range well
enough to measure the error distributions. This allows the use of
calibration sets from heterogeneous samples, as was done in this
paper.

(v) The inversion algorithm presented in this paper presents
an alternative to iterative deconvolution algorithms (Lucy 1974;
Brodwin et al. 2003). As emphasized by Lucy (1974), the two
methods have very different mathematical philosophies; iterative
methods treat the problem as one in statistical estimation, while the
philosophy in this paper derives from the theory of integral equa-
tions. However, in the high S/N regime, both methods will produce
similar results and there is little to distinguish between the two. For
low S/N, the deconvolution problem may not possess a solution and
iterative methods may not converge. In these cases, the algorithm
presented in this paper transparently allows the inclusion of exter-

nal information as part of the penalty function to yield a meaningful
solution. In cases where one possesses reliable prior information,
one can then refine that information to yield a better solution.
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